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ABSTRACT

Automated satellite image interpretation would be uLeful in

many forecasting operations. One asper-t of that interpretation,

cloud classification, is examined. Ten classes, composed of low,

middle, high, and precipitation cloud types plus clear, are used

as output nodes in a Probabilistic Neural Network (PNN) approach

to classification of data using four Advanced Very High Resolu-

tion Radiometer (AVHRR) subscenes. Input to the neural network

consists of 12 features that include a mixture of spectral,

textural, and physical measures. These measures are selected,

using a feature selection routine, from a collection of over 200

features. An overall accuracy of 85.15% is the result. Four

classes have agreement of 90% or better. The two classes with

the poorest accuracies were presented to the classifier with the

smallest sample sizes. An increase in the number of samp'

should increase the accuracy of the classifier.
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A Probabilistic Neural Network Approach to
Cloud Classification

1. Introduction

High quality real-time satellite imagery would provide

valuable information to any shipboard forecaster. With the

advent of the proper shipboard equipment, this additional fore-

casting assistance will soon be available. Unfortunately, de-

tailed imagery interpretation is a talent currently limited to a

very few experts. Automatic interpretation would ease the burden

that would be required of shipboard forecasters to learn, prac-

tice, and use this additional skill. With time being a con-

straining element in any forecasting situation, receiving quickly

produced output that could be immediately used as a forecasting

or observation tool would be a tremendous asset.

Cloud classification of the pixel data could be a part of

the image analysis process. This classification can then be

used, for example, as input into a more generalized synoptic

analysis of the image or as relevant information to any naval

operation. In polar regions, separation of image elements into

ice, snow, water, and clouds would be extremely useful. This is

true not only in operations, but in climate research as well.

Successful validation of the classification methodology employed

here was performed earlier on polar data using a unique set of

classes (Sengupta et al., 1991). The purpose of this study is to
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evaluate the effectiveness of a neural network approach to cloud

classification in nonpolar regions.

Based upon the cloud classification procedure developed for

the Tactical Environmental Support System (TESS) (Crosiar et al.,

1990), twelve classes were established as the output nodes in the

neural network. These classes are listed in Table 1. Pixel data

from the images were made up of calibrated gray levels (0-255).

Input data for the network were gathered from spectral, textural,

and physical features computed from the pixel data.

A background of the neural network and input features is

provided in section 2. A description of the data is found in

section 3. Data processing procedures are found in section 4. A

discussion of the results comprises section 5. A summary and

future considerations are presented in section 6.

2. Background

Using neural networks to classify cloud types in satellite

imagery has shown recent success (Key et al., 1989; Lee et al,

1990). The investigation performed here employs the Probabilis-

tic Neural Network (PNN) approach to cloud classification. The

PNN was chosen over other neural networks because of its speed in

training without a sacrifice in accuracy. Sengupta et al. (1991)

found the PNN to be superior to the Feed-Forward Back Propagation

neural network and the more traditional Stepwise Discriminant

Analysis.
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Table 1. Twelve classes originally considered for testing.

1. Cirrus (Ci)
2. Cirrocumulus (Cc)
3. Cirrostratus (Cs)
4. Altostratus (As)
5. Nimbostratus (Ns)
6. Stratocumulus (Sc)
7. Stratus (St)
8. Cumulus (Cu)
9. Cumulonimbus (Cb)
10. Clear (Clr)
11. Altocumulus (Ac)
12. Cumulus Congestus (CuC)

The PNN makes use of a Bayesian strategy for classification

(Specht, 1990). The Bayes decision rule requires calculation of

the probability density function of each class. Unknown proba-

bility densities can be estimated using the training samples

(normalized to unit length) in a Parzen estimator (Specht, 1990).

The estimator is given by:

f(R) = i/mc I/(27ra 2 )d/2 Z exp[(Zi-l)/o
2 ]

i=l->mc

where:

R - feature vector of testing sample

mc - number of training patterns in class c

a - "smoothing parameter"

d - number of features

Zi Si - - the dot product of the ith training (norm-

alized) sample and the testing (normalized) sample,

point X in the feature space
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- training sample in class c

The "smoothing parameter," a, can be computed from

02 = Gmc
- F

where F and G can be experimented with interactively in the PNN

to find the value of a2 that provides the best result. As dis-

cussed in Specht (1990) the decision boundaries can range from

linear as a -> a, to very nonlinear as a -> 0. The PNN

configuration for a two-class problem is displayed in Figure 1

(Specht, 1990).

The feature vector, built from 203 components, contains

spectral, textural, and physical parts. A mixture of component

types has been shown in other examinations (Chen et al., 1989;

Ebert, 1987 and 1989; Garand, 1988; Goroch and Welch, 1989; Key,

1990; Lee et al., 1990; Welch et al., 1989; Welch et al., 1990)

to provide better results than the use of a single type. Textur-

al measures, representing the spatial distribution of gray levels

within an image, were calculated using the Gray Level Difference

Vector (GLDV) approach and the Sum And Difference Histogram

(SADH) method. The following GLDV measures were computed for

both channels 1 (0.63 Am) and 4 (10.8 Am) of the AVHRR:

mean g = Z mP(m)
m

standard deviation a = [Z (m-M)2p(m)]1/2

m

angular second moment asm = Z [P(m)] 2

m
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Figure 1. PNN configuration for a two-class problem (adapted
from Specht, 1990).
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entropy ent = -Z P(m) logP(m)
m

local homogeneity lh = Z P(m)/(l+m 2)
m

contrast con = Z m2p(m)
m

cluster shade cs = [Z (m-i) 3p(m)]/o 3

m
cluster prominence cp = [Z (m-j) 4 p(m)]/0 4 - 3

m

where m = II-JI, the absolute difference of gray levels one pixel

apart in a fixed direction. P(m) is the difference vector proba-

bility density function (estimated by gray level frequencies of

occurrence / total frequencies). The following SADH measures

were computed for channels 1 and 4:

mean pS = Z KPs(K)
K

standard deviation sd={1/2[Z (K-gs)2Ps(K) + Z L2PD(L)])I/2
K L

angular second moment asm = Z [Ps(K)] 2 Z [PD(L)] 2

K L

contrast con = Z L2PD(L)
L

correlation cor = 1/2[E (K-As)2 Ps(K) - Z L2PD(L)]/sd2

K L

entropy ent = -Z Ps(K) log(Ps(K)) Z PD(L) log(PD(L))
K L

local homogeneity lh = E PD(L)/(I+L 2 )
L

cluster shade cs = [Z (K-js)3Ps(K)]/sd 3

K

cluster prominence cp = [Z (K-ps) 4PS(K)]/sd4 - 3
K
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where K=I+J and L=I-J. Ps(K) and PD(L) are the probability

density functions.

Run length statistics (Connors and Harlow, 1980; Haralick,

1979) were computed for channels 1 and 4. These measures are

based on sets of adjacent pixels in a particular direction having

the same gray level. The following features were used:

short run emphasis sre = I/Tr Z Z P(i,j)/j 2

ij

long run emphasis lre = l/Tr Z E j2P(i,j)
ij

gray level distribution gld = l/Tr Z [E P(i,j)] 2

i j

run length distribution rld = l/Tr Z [Z P(i,j)] 2

ji

run percentages rp = i/Tp Z Z P(i,j) = Tr/Tp

ij

where:

i = 0 -> N -i

= 1 -> Nr

Ng - number of gray levels

Nr - number of runs

Tp - number of image pixels

Tr = Z Z P(ij)
ij

P(i,j) - number of occurrences of runs of length j having

gray level i

Spectral measures used as part of the feature vector includ-

ed maximum, minimum, range, mode, median, mean, and standard
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deviation of pixel values in channels 1 and 4.

Finally, physical features from Garand (1988) and Goroch and

Welch (1989) were added. They included visible cloud fraction,

mean albedo of cloudy pixels, surface temperature, cloud top

temperature, infrared cloud fraction, low cloud fraction, mid-

level cloud frdction, cirrus cloud fraction, and multilayer cloud

index.

3. Data Description

An important step in the development of any supervised

classifier is accurately labeling (manually classifying) the

images to be used as training (and testing) data. To ensure the

quality of this procedure, previously labeled AVHRR subscenes

were obtained for this study through the Naval Postgraduate

School (NPS) (Neu, 1990). Four nonpolar 512x512 pixel images

(Table 2) were labeled by two independent experts (Professors C.

Wash and F. Williams) for the purpose of evaluating an automated

multispectral cloud classifier (Neu, 1990).

Many cloud types are evident in these subscenes (Figures 2-5

(channel 2 is used for display purposes only)) and eleven of

these types (plus clear) were used as classes in the labeling

done by the experts (see Table 1). The subscenes included one

from the tropics (case 1), two from the subtropics (cases 2 and

3), and one from the midlatitudes (case 4). Thin cirrus, low
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Table 2. Four subscenes used for validation of classifier
(Neu, 1990).

Case Date Time Zenith Ang Scene Center (deg)
(UTC) (deg) Lat.(N) Lon.(W)

1 13 Dec 88 1809 31.3 20 69
2 17 Jan 88 2256 54.6 34 119
3 13 Dec 88 1809 38.5 34 74
4 14 Dec 88 1758 46.4 42 70

clouds, and developing cumulus are apparent in case 1. An

extratropical cyclone in case 2 provides a variety of cloud types

including cirrus, convective, stratiform, and cumulus clouds.

Case 3 presents an intensifying short wave with various regions

of different cloud types. A mixture of low clouds and a band of

high clouds make up the midlatitude subscene of case 4.

The experts labeled the subscenes using an 8x8 pixel grid

overlay. Only regions for which there was a consensus classifi-

cation between the experts were considered. This set of labeled

data became the foundation for building the collection of samples

used in this investigation.

4. Data Processing Procedures

Since calculations of textural measures require larger

regions than the 8x8 labeled areas, each 8x8 "box" was examined

to determine the feasibility of expanding it to a 32x32 pixel re-

gion. With the assistance of Mr. Kim Richardson (NOARL) and Mr.

Kurt Nielsen (NPS) the four subscenes were transferred from the
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NPS computer system to the HP9000/835 Naval Environmental

Operational Nowcasting System (NEONS) at NOARL (Jurkevics et al.,

1990). Channels 1, 2, and 4, plus a 4-5 difference (channel 4

minus channel 5) were supplied for each subscene. Using the

Interactive Data Language (IDL) software package (Research

Systems, Inc., 1990), each of the oria" al 187 boxes was

examined. Through the use of visual interpretation as well as

histogram and statistical comparisons, a total of 105 boxes were

expanded to the larger 32x32 regicn. After discussions among the

authors and Dr. Paul Tag of NOARL, more samples were determined

to be needed to successfully run the PNN. The subscenes were

examined again to find neighboring regions that could be added to

the data set. This task resulted in the addition of 67 samples.

However, the total of 172 samples was still not of adequate size.

A determination was made that a 16x16 pixel region would be a

viable alternative a.d marginally large enough for texture

calculations. This decision involved much thought and discussion

due to the importance of the calculations of the texture

measures. After removing altocumulus and cumulus congestus from

the list of classes (too few samples), breaking up the 32x32 size

boxes into four separate regions created 668 16x16 samples. From

this new set, 610 samples were determined to be useful and formed

the final data set. The number of samples for each cloud type

that was used to train (2/3 of the samples from each class) and

test (1/3 of the samples from each ciass) the PNN classifier is

14



displayed in Table 3.

Components of the feature vector for each sample were calcu-

lated. These components were comprised of 170 textural measures

(GLDV and SADH), 14 spectral measures, and 19 other features (run

length statistics and physical measures). Texture calculations

were performed on the 16x16 pixel region and each of the 16 4x4

pixel regions within the 16x16 area. The maximum, minimum, mean,

and standard deviation of the values from the smaller areas were

used as components (along with the 16x16 value) in the feature

vector for each texture measure. A complete listing of the

measures is presented in Table 4. Subroutines were written in

IDL to compute the features for each sample, with the resulting

data and class type number written to a file. Each feature was

normalized and run through a feature selection routine to deter-

mine the order of importance of the features in discriminating

the 10 cloud classes. This routine uses the Bhattachyra Class

Separability Index and a Sequential Forward Selection method

(Devijver and Kittler, 1982). This ranking procedure was an

initial step in the reduction of the dimensions of the feature

vector so that measures of little or no use to the classification

could be removed. The top 50 features, in order of importance,

are listed in Table 5.

A rule of thumb suggests that the minimum number of training

samples (per class) required for a robust training of the neural
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Table 3. Number of training and testing samples in each class.

Class Training Testing Total

Ci 71 35 106
Cc 38 19 57
Cs 25 12 37
As 27 13 40
Ns 40 19 59
Sc 44 21 65
St 58 28 86
Cu 36 18 54
Cb 27 14 41

Clr 44 21 65

Total 410 200 610

network is

(Number of classes + Number of features) x 5.

Using this rule of thumb and given the size of the current data

set for each class, more data are needed. However, the data set

was considered large enough to obtain a preliminary evaluation

and a PNN classification was performed.

A breakdown of the data into training and testing samples

was required to determine the accuracy of the classifier. A

random selection of 2/3 of the samples in each class was per-

formed to create the training set, and the remaining 1/3 made up

the testing set. A program was written to perform the random

selection and 10 different data sets (different samples selected

as training and testing) were created. Using a variety of data

sets provided an indication of the consistency of the classifier

in the classification of the data. Next, the optimum number of
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Table 4. List of 203 features calculated for each sample.

GLDV* and SADH* (170 Features) Run Length* (101

Mean Short Run Emphasis
Standard Deviation Long Run Emphasis
Angular Second Moment Gray Level Dist'n
Entropy Run length Dist'n
Local Homogeneity Run Percentage
Contrast
Cluster Shade
Cluster Prominence
Correlation - SADH only

5 values computed for each measure:
16x16 pixel region; maximum,
minimum, mean, standard deviation
of the 16 4x4 pixel regions
within the 16x16

Spectral* (14) Physical (9)

Maximum Pixel Value IR Cloud Fraction
Minimum Pixel Value Low Cloud Fraction
Range of Pixel Values Mid-level Cloud Fraction
Mode of Pixel Values Cirrus Cloud Fraction
Median of Pixel Values Multilayer Cloud Index
Mean of Pixel Values Cloud Top Temperature
Standard Dev. of Pixel Values Cloud Albedo

Surface Temperature
Visible Cloud Fraction

* AVHRR Channels 1 and 4

features to use to train and test the PNN was determined. The 10

data sets were run on the PNN with a varying number of features.

The top five features (see Table 5) were used first. The

resultant average overall accuracy of the test samples of the

data sets was 74.70%. Then starting at 10 features and

incrementing by one (up to a maximum of 20 features), the PNN was

trained and tested on the 10 data sets to find the average

17



Table 5. Top 50 features (in order of importance) selected by
feature selection routine.

1. Cloud albedo
2. SADH angular second moment, channel 4, mean 4x4 regions
3. SADH mean, channel 1, mean 4x4 regions
4. SADH correlation, channel 1, 16x16 region
5. Cloud top temperature
6. SADH angular second moment, channel 1, mean 4x4 regions
7. GLDV angular second moment, channel 1, 16x16 region
8. GLDV entropy, channel 1, 16x16 region
9. GLDV mean, channel 1, 16x16 region
10. GLDV contrast, channel 1, minimum 4x4 regions
11. Minimum channel 4
12. Median channel 4
13. Minimum channel 1
14. GLDV standard deviation, channel 4, mean 4x4 regions
15. SADH mean, channel 4, 16x16 region
16. SADH mean, channel 4, maximum 4x4 regions
17. GLDV standard deviation, channel 4, std. dev. 4x4 regions
18. SADH entropy, channel 4, standard deviation 4x4 regions
19. SADH angular second moment, channel 4, maximum 4x4 regions
20. SADH entropy, channel 4, maximum 4x4 regions
21. GLDV cluster shade, channel 4, 16x16 region
22. SADH entropy, channel 1, maximum 4x4 regions
23. Mean channel 1
24. GLDV standard deviation, channel 1, minimum 4x4 regions
25. Surface temperature
26. Multilayer cloud index
22. SADH entropy, channel 1, 16x16 regions
28. SADH mean, channel 1, minimum 4x4 regions
29. SADH cluster shade, channel 1, 16x16 region
30. Cirrus cloud fraction
31. GLDV standard deviation, channel 1, mean 4x4 regions
32. GLDV local homogeneity, channel 1, 16x16 region
33. GLDV local homogeneity, channel 1, maximum 4x4 regions
34. GLDV mean, channel 1, minimum 4x4 regions
35. GLDV contrast, channel 1, mean 4x4 regions
36. GLDV contrast, channel 1, maximum 4x4 regions
37. Range of values channel 1
38. Low cloud fraction
39. Gray level distribution, channel 4
40. Gray level distribution, channel 1
41. Run percentage, channel 1
42. Run length distribution, channel 1
43. SADH angular second moment, channel 1, maximum 4x4 regions
44. SADH entropy, channel 1, minimum 4x4 regions
45. SADH mean, channel 1, maximum 4x4 regions
46. GLDV cluster shade, channel 4, mean 4x4 regions

18



Table 5 (continued).

47. GLDV contrast, channel 4, mean 4x4 regions
48. GLDV entropy, channel 4, mean 4x4 regions
49. SADH entropy, channel 4, mean 4x4 regions
50. SADH angular second moment, channel 1, 16x16 region

overall accuracy associated with various feature numbers. It

should be noted that with every change in the number of features,

experimentation was needed to determine the best value for the

"smoothing parameter" (a). The top 12 features were found to

produce the highest average overall accuracy. The average

overall accuracies and the standard deviations associated with

each feature number are listed in Table 6.

5. Results

The top twelve features (see Table 5) were used as the input

nodes for the PNN. Notice that they are comprised of 8 textural,

2 spectral (channel 4 minimum and median), and 2 physical (cloud

albedo and temperature) measures. The remaining layers of the

PNN included the following: 13 (number of features + 1) nodes in

the normalizing layer; 410 nodes (number of training samples) in

the pattern layer; 10 nodes (number of classes) in the summation

layer; and 10 nodes (number of classes) in the output layer. An

example diagram of a two class problem is shown in Figure 1.

An average overall accuracy of 85.15% with a standard devia-

tion of 1.96% was obtained for the testing samples of the 10 data

19



Table 6. Average accuracies and standard deviations for the
PNN classifier on 10 data sets using a varying number
of features.

Feature Avg. Overall Standard
Number Accuracy Deviation

5 74.70% 2.98%
10 83.15% 2.32%
11 82.95% 2.59%
12 85.15% 1.96%
13 84.60% 1.74%
14 84.05% 1.96%
15 84.30% 0.89%
16 84.00% 2.15%
17 84.70% 2.02%
18 83.85% 1.31%
19 84.20% 1.55%
20 83.35% 1.70%

sets. See Table 7. Examining the average confusion matrix

(Table 8) reveals that most of the misclassifications were into

classes hiving similar signatures. For example, cirrus misclas-

sified as cirrostratus and vice versa; stratocumulus misclassi-

fied as stratus or cumulus; cumulus misclassified as stratocumu-

lus; nimbostratus misclassified as cumulonimbus and vice versa.

The two classes (Cs and As) with the lowest average accuracies

are also the classes with the smallest number of training and

testing samples. Increasing the sample size should improve the

accuracy. Encouraging results occurred in four of the classes

(Cc, Ns, St, and Clr) where the average accuracy of their testing

samples was greater than 90%. In general, the accuracy obtained

when running a PNN using the entire data set as training samples

and the entire set as testing is the upper limit for any

20



Table 7. Average accuracies and standard deviations for 12
feature PNN classifier using 10 data sets.

Class AvQ. Accuracy Standard Deviation
Ci 84.29% 3.63%
Cc 95.79% 4.15%
Cs 43.33% 16.57%
As 76.92% 8.88%
Ns 91.05% 6.10%
Sc 80.00% 9.47%
St 92.14% 5.00%
Cu 86.11% 7.05%
Cb 84.28% 9.40%

Clr 96.19% 3.01%

Overall 85.15% 1.96%

particular data set. For this study, the result of 98.52% can be

considered the upper bound of the accuracy (Table 9). The three

classes that have less than 100% accuracy (Cs, As, and Cb) are

the classes with the smallest sample sizes.

As noted earlier, data from the four AVHRR subscenes studied

here were originally used for testing a multispectral technique

of classification (Neu, 1990). The overall accuracy of that

method was 67.4%. However, that result did include the two addi-

tional classes of Ac and CuC, which had minimal representation in

the subscenes and were not included here. The use of textural

and other measures, in addition to spectral measures, provided

useful information in the classification of the data by the PNN

discussed here. Also, the neural network approach itself, which

has been shown to be superior (Key et al., 1989; Sengupta et al.,

1991), was another contributing factor in the higher accuracy

21



Table 8. Average (10 data sets) Confusion Matrix (%).

Automated Classification (columns)
Manual Classification (rows)

Ci Cc Cs As Ns Sc St Cu Cb Clr

Ci 84.3 0.6 12.6 0 0 2.5 0 0 0 0

Cc 1.6 95.8 0 2.6 0 0 0 0 0 0

Cs 51.7 2.5 43.3 0 0 0.8 1.7 0 0 0

As 0 5.4 0 76.9 3.1 3.1 7.7 0 3.8 0

Ns 0 0 0 0 91.1 0 0 0 8.9 0

Sc 0 0 0 1.9 0 80.0 6.7 8.6 2.8 0

St 0 0 1.4 0 0 4.7 92.1 1.8 0 0

Cu 0 0 0 0 0 13.3 0.6 86.1 0 0

Cb 0 0 0 1.4 11.4 2.9 0 0 84.3 0

Clr 1.9 0 1.9 0 0 0 0 0 0 96.2

(85.15%) obtained in this study.

6. Summary

With the recent success of a neural network approach to

classification of land, water, and sky elements in polar scenes

(Sengupta et al., 1991), an analogous investigation into nonpolar

data was performed with an emphasis on cloud classification

alone. Spectral, textural, and physical features were computed

in order to classify 10 cloud types (including clear). Textural

measures (GLDV and SADH) were calculated for 16x16 pixel regions

22



Table 9. Upper limit of accuracies for 12 feature PNN

classifier (entire data set training and testing).

Class Max Accuracy Sample Size

Ci 100.00% 106
Cc 100.00% 57
Cs 83.78% 37
As 97.50% 40
Ns 100.00% 59
Sc 100.00% 65
St 100.00% 86
Cu 100.00% 54
Cb 95.12% 41

Clr 100.00% 65

Overall 98.52% 610

and the 16 4x4 pixel regions within the 16x16 area. The maximum,

minimum, mean, and standard deviation values of the smaller

"boxes" were computed and used as features. Spectral measures

included the maximum, minimum, range, mean, median, mode, and

standard deviation of pixel values within the 16x16 regions. Run

length statistics were also computed. All of the textural meas-

ures, spectral measures, and run length statistics were calculat-

ed using visible (channel 1) and infrared (channel 4) data. Nine

physical features were computed as well. These included visible

cloud fraction, cloud albedo, surface temperature, cloud tempera-

ture, infrared cloud fraction, low cloud fraction, mid-level

cloud fraction, cirrus cloud fraction, and multilayer cloud

index. This brought the total number of features to 203.

The top 50 features that best discriminate the data were

found using the Bhattacharya Class Separability Index and a

23



Sequential Forward Selection method. Of these 50, the top 12

were found to produce the highest classification accuracy using

the PNN. These features, which included spectral, textural, and

physical measures, produced an average overall accuracy of

85.15%, with a standard deviation of 1.96%. The two classes (Cs

and As) where most of the error was found were also the least

represented classes in the data set. Test samples in the Cc, Ns,

St, and Clr classes were all classified with an average accuracy

of greater than 90%. Higher accuracies were obtained in the

study of this classification method compared with a multispectral

technique used on the same images (Neu, 1990). A comparison of

the sample sizes and class accuracies for the two studies is

presented in Table 10.

Although preliminary, the results presented here are very

encouraging. The next step involves the collection of more

expertly labeled data to add to the existing set. The goal is to

meet the accepted minimum requirement of sample size per class.

A new validation of the classifier can then be performed on 100

data sets created using a "bootstrap" strategy of replacement

samples. This method allows for the selection of a sample more

than once to be a training sample in the same data set (a more

complete random selection). Subsequent research must also

include classifications using polar scenes. Whether the accuracy

obtained here will extend to a global cloud data set is unknown;
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Table 10. Class accuracies and sample testing sizes of the PNN
classifier and a multispectal (MS) technique used on
the same AVHRR images.

PNN Testing MS Testing PNN MS
Class Sample Size Sample Size Accuracy Accuracy

Ci 35 27 84.3 81.5
Cc 19 9 95.8 66.7
Cs 12 12 43.3 75.0
As 13 12 76.9 58.3
Ns 19 11 91.1 54.5
Sc 21 14 80.0 57.1
St 28 23 92.1 39.1
Cu 18 34 86.1 73.5
Cb 14 14 84.3 50.0

Clr 21 18 96.2 94.4
Ac -- 3 -- 33.3
CuC -- 10 -- 90.0

Overall 200 187 85.2 67.4

it is possible that including polar scenes will diminish the PNN

accuracy and require separate PNN classifiers.
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